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Which objects are sounding 
in this interaction?

Figure 1. Humans handle a wide variety of objects throughout the day and many of these interactions produce sounds. We introduce
a multimodal object-aware framework that learns the relationship between the objects in an interaction and the resulting sounds. This
enables our model to detect the sounding objects from a set of candidates in a scene.

Abstract

Can a model distinguish between the sound of a spoon hit-
ting a hardwood floor versus a carpeted one? Everyday
object interactions produce sounds unique to the objects in-
volved. We introduce the sounding object detection task to
evaluate a model’s ability to link these sounds to the objects
directly involved. Inspired by human perception, our multi-
modal object-aware framework learns from in-the-wild ego-
centric videos. To encourage an object-centric approach,
we first develop an automatic pipeline to compute segmen-
tation masks of the objects involved to guide the model’s
focus during training towards the most informative regions
of the interaction. A slot attention visual encoder is used to
further enforce an object prior. We demonstrate state of the
art performance on our new task along with existing multi-
modal action understanding tasks.

1. Introduction
Humans interact with many physical objects throughout the
day. Oftentimes, interacting with an object results in a dis-
tinct sound that provides informative cues about that action
and the objects involved. The sound produced when a knife
cuts through an onion is distinct from the sound made when

the knife hits the chopping board. Humans can listen to the
unique sounds of these object interactions and make cross-
modal inferences about the objects involved. After hearing
a sound, we can look at a visual scene and latch onto its
focal region. For example, if we hear the sound of oil siz-
zling, we do not first look at the sink next to the stove but
instead direct our attention to the person stirring food in a
pan. This is a biological phenomenon where humans per-
ceive their surroundings by concentrating on key regions
in a scene [19, 37]. While humans excel at distinguish-
ing these sounds, current learning methods face challenges.
Unlike the typical video datasets used in multimodal train-
ing [4, 8, 15], which feature predefined sound categories
(e.g. vehicles, animals), differentiating the impact sound
caused by different materials is more subtle. This shortcom-
ing is compounded by vision frameworks relying on global
features that take the whole scene as input [3, 5, 25, 41].
Meanwhile, understanding object interactions requires a lo-
calized, object-centric approach.

We evaluate a model’s understanding of the relationship
between object interactions and sound by proposing the
sounding object detection task. Given a set of object re-
gions present in a scene and the sound of an interaction, the
model predicts which object is directly involved in produc-
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ing the sound. To test this, we introduce a manually an-
notated benchmark containing segmentation masks of the
ground truth objects. We further evaluate the model’s un-
derstanding of sounds and object interactions by having it
predict whether the existing sound is caused by the inter-
action in the first place. This task, called sounding action
discovery, was first proposed by Chen et al. [6]. We demon-
strate that with our method, we outperform existing multi-
modal techniques on both tasks.

We do so by taking inspiration from natural human per-
ception and develop a multimodal object-aware framework
to guide our model to explicitly focus on the informative
regions of an object interaction. We leverage in-the-wild
egocentric videos of interactions from Ego4D [18] and Epic
Kitchens [10], with the benefits being twofold: 1) The large
scale of these datasets means that a wide range of objects
and object interactions are captured, including long-tail ex-
amples, and 2) having an egocentric point of view means
most actions occur in the near field, making the objects
more visible and the interactions more audible.

While existing works have studied frameworks that fo-
cus on objects to reduce visual redundancy and learn a more
compact representation [11, 26, 35, 47], these works only
learn from a single modality and exclude the additional
information gained by associating object interactions with
sounds. There are a few works on multimodal object-centric
representation learning [13, 14] but the data they train on
is synthetic or laboratory-collected. Such methods do not
scale well if we want to learn about the wide range of ob-
ject interactions that occur in daily life.

To help our method scale to these larger datasets, we de-
velop an automatic pipeline that leverages an off-the-shelf
hand-object interaction detection model [36] to automati-
cally annotate our training data with object segmentation
masks. These masks inform our model on which visual
patch features to sample, guiding its focus towards the re-
gions of the object interaction and learning an object-aware
representation in the process. To further equip our model
with a strong object prior, we initialize our visual encoder
with a pretrained slot attention model [21]. These archi-
tectures contain a bottleneck attention module which learn
to compress visual features into k output vectors called
slots [26]. Through training, each slot learns to attend to
unique objects and creates object-centric boundaries. Us-
ing our multimodal object-aware approach, we aim to learn
the unique correlations between an object interaction and
the sound it produces. To do so, we introduce the sound-
ing object detection task along with a manually annotated
benchmark and demonstrate state of the art performance.

2. Related Work
Multimodal representation learning Multimodal repre-
sentation learning unifies vision, audio, language, and other

modalities through contrastive and self-supervised learning.
Contrastive learning on large-scale datasets have enabled
vision-language pretraining for zero-shot classification and
retrieval, later extending to audio-text alignment [30, 42].
In ImageBind [16], a unified embedding space is learned
across a range of modalities to enable cross-modal asso-
ciations without direct supervision. This was later refined
by mapping all modalities to language for stronger seman-
tic consistency [48]. In other works, [45] supports twelve
modalities with different tokenization techniques using a
scalable multimodal framework. In [6], the authors develop
a contrastive-consensus loss framework to learn how ac-
tions sound from egocentric videos. The loss refines audio-
vision-language embeddings to better associate actions with
their characteristic sounds. Our work relies on similar con-
trastive frameworks to learn from egocentric videos, but we
employ an object-aware approach that enables our model to
reason about localized object interactions.

Object representations Traditional deep learning mod-
els typically analyze entire scenes without distinguish-
ing between individual objects, leading to inefficiencies
which object-centric learning aims to address. In [46],
object-guided token sampling and attention are used to en-
hance action recognition in video transformers. Addition-
ally, slot attention models [26] use a bottleneck attention
module to compress image features into k slot vectors.
Through an iterative attention mechanism, slots learn to at-
tend to individual object regions, forming object segmen-
tation masks. [21] introduced improvements to the original
slot attention model by using a student-teacher framework.
Finally, [13, 14] introduced a multimodal dataset to capture
high-fidelity object properties across RGB, depth, touch,
and audio, enabling object-centric learning beyond visual
cues. However, the data is generated synthetically or col-
lected in a controlled lab environment. On the other hand,
our work learns from in-the-wild egocentric videos which
capture a wide range of objects and object interactions.

Audio-visual correspondence Natural correlations exist
between vision and audio and jointly modeling them can
lead to richer representations [1, 2, 6, 40]. Tasks that
leverage this correlation include using vision as supervi-
sion for sounds [4] and using the temporal [22] and spa-
tial [40] alignment as a self-supervisory signal. Additional
lines of work involve tasks such as sound source localiza-
tion [12, 39, 43] and audiovisual localization [9, 28, 29].
The former involves using vision as a supervisory signal,
such as when [43] captured the subtle sounds of human
movement and learned to ground the sound source to the
humans in the video, while the latter learns to semantically
associate visual regions with audio representations. Our
work focuses on explicitly associating in-the-wild objects
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with the sounds of its interactions, where the differences
can be subtle and less semantically obvious.

3. Task formulation
Sounding object detection We define a sounding object
to be an object that is directly involved in an action, where
the resulting interaction generates sound. While an environ-
ment may contain many objects, as shown in Fig. 1, only
one or two will be central to the action. We propose to de-
tect these salient objects by leveraging the sound produced
during the interaction, as it can reveal object contact and
distinguish between characteristics like material and mass.

Given a set of object regions in a scene along with
the video and sound of an object interaction, we want
to detect the objects that are directly involved in the ac-
tion. While this task seems similar to audiovisual local-
ization [9, 29, 33], the latter is more under-constrained as
it requires the model itself to predict the boundaries of a
sounding region. However, our work is more interested in
which objects are involved rather than where exactly that
object is. And given our object-centric framework where we
assume the presence of objects, it is easier for us to prede-
termine the boundaries of all potential objects and have our
model make a decision based on that information. Thus, our
model is more focused on predicting the semantic relation-
ships between distinct objects and sounds rather than their
visual boundaries, which is less relevant to our work.

Along the same lines, the typical metrics associated with
audiovisual localization such as consensus intersection over
union [33] penalize predictions that do not exactly align
with the ground truth boundaries. Even if a localization map
mainly centers its prediction on the correct object, some
stray predictions will lead to a lower cIoU score. Whereas
in our sounding object detection task, models predict a sim-
ilarity score for each given object and we use top-1 accuracy
to measure performance. Our metric puts the focus on the
comparison between different objects rather than the exact
boundaries of a specific object.

Sounding action discovery Closely tied to the concept of
sounding objects are sounding actions, first introduced by
Chen et al. [6]. They define a sounding action as “a human-
initiated action that produces sound during its execution due
to interactions with the surrounding environment”. Based
on this definition, one can think of sounding objects as the
specific elements in that environment. Examples of sound-
ing actions are shown in Fig. 2.

This task includes language as a third modality, where
the narrations found in Ego4D [18] and Epic Kitchens [10]
directly describe the action depicted. As a result, we can
leverage these narrations as the ground truth to see if both
the visual and audio modalities align. If, for example, the
video depicts the narrated action but the audio is dominated

Is the action sounding?

# C C touches on his phone with 
the right hand#C C cuts the grass using a sickle

Figure 2. We also evaluate our model on sounding action discov-
ery [6]. The left example shows a sounding action, where cut-
ting the grass directly produces the rustling sound. Meanwhile,
the right example depicts a non-sounding action where the sound
comes from the video and not the action of tapping the screen.

by off-screen sounds like music, then this mismatch indi-
cates that the action is not sounding. This alignment is
leveraged when the authors design their loss, detailed in
Sec. 4.2. While sounding object detection requires a local-
ized understanding of a scene, sounding action discovery is
a more global task. Given a video of an action and the cor-
responding sound, a model performs binary classification to
predict whether the action is sounding or not.

Putting it together We consider sounding object detec-
tion and sounding action discovery as complementary and
evaluate our method on both. Having a model capable of
both tasks allows us to first determine which actions are
sounding and then among the sounding actions, we can
detect the exact objects that caused the sound. Such a
framework allows us to understand the relationship between
visual actions and sounds at both a global and localized,
object-centric level.

4. Method
We introduce a framework to learn about object interac-
tions across vision, audio, and language. Our model learns
object-aware representations by focusing on the regions
where the interaction occurs. We train our model con-
trastively to align all modalities into a common embedding
space. By doing so, we can directly compute the similarity
between modality embeddings using cosine similarity.

4.1. Architecture
Formally, our model takes as input video frames V ∈
RT×H×W×3, audio waveform A ∈ RS , and language
narration L, where T is the number of video frames and
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Figure 3. Left: Our object-aware visual features. Given a video frame and corresponding objects segmentation mask, we first encode
the image into patch embeddings. We also patchify the mask to get a per-patch objectness score, corresponding to the percentage of the
patch containing the object. The score informs the model on which patch embeddings to keep based on a threshold and the remaining
embeddings are pooled into a single visual embedding vector. Right: The hard negatives paradigm used in the finetuning stage. Additional
negative embeddings are sampled from non-interaction regions of the same image.

S is the sequence length of the audio waveform. Each
modality has its own encoder which converts the raw in-
put into learned embeddings e∗v ∈ RT×N×D, ea ∈ RD,
and el ∈ RD, respectively. Here, N is the number of non-
overlapping patches per frame and D is the common feature
dimension which all modalities are projected to. To make
our model object-aware, we also have binary object seg-
mentation masks of the objects involved in the interaction
M ∈ RT×H×W×1.

While previous object-centric learning methods [47] di-
rectly apply M to the input V to remove redundant visual
tokens, we find empirically that applying the mask to the
visual embeddings instead produces better results. We hy-
pothesize that although most of the visual background is
redundant, there is still some useful semantic information
(e.g. it may be useful to know if the action occurs in a
kitchen, outdoors, etc.). Accordingly, the self-attention of
the encoder instills some of that background information
into each of the patch features. We apply the mask to e∗v by
first patchifying M to get M̃ ∈ RT×N×1. Then, we can di-
rectly apply the patchified mask elementwise ẽv = M̃∗e∗v ∈
RT×N×D so that only the patch features directly associated
with the object regions are non-zero. We then apply mean-
pooling on ẽv over the non-zero features across T and N to
get a single embedding vector for the visual input ev ∈ RD.
The process for calculating ev is illustrated in Fig. 3.

4.2. Training framework
Once we have our per-modality embeddings ev, ea, el, we
first pretrain our model using the multimodal contrastive-
consensus coding (MC3) loss introduced by Chen et al. [6]
for their sounding action discovery task. It involves a two-
stage training framework where first the embeddings are
aligned contrastively (the “align” stage) before applying an
additional consensus coding loss to refine the embeddings
within each sample (the “refine” stage). After pretraining,
we evaluate our model as is on sounding action discovery

(Sec. 6.2). Then, we propose a finetuning method using a
hard-negatives contrastive loss for sounding object detec-
tion (the “finetune” stage).

Align stage The align stage produces an initial embed-
ding space where different modality embeddings that cap-
ture the same interactions are closer together compared to
embeddings from a different category of interaction. This
is done by treating modalities belonging to the same data
sample as a positive pair and contrasting that against nega-
tive pairs formed from the other samples in the batch. We
use InfoNCE loss [38] for this stage. Let eix be the embed-
ding of modality x for the ith sample in the batch B. Then
for a given modality pair (x, y), the loss is:

Lx→y = − 1

|B|
∑
i∈B

log
exp(eixe

i
y/τ)∑

l∈B exp(eixe
l
y/τ)

(1)

and similarly, a symmetric version of Eq. (1) is defined as:

Ly→x = − 1

|B|
∑
i∈B

log
exp(eiye

i
x/τ)∑

l∈B exp(eiye
l
x/τ)

(2)

where τ is the temperature. The final loss for this stage then
is the sum of these two symmetric losses for every modality
pair: Lalign =

∑
x,y Lx→y + Ly→x. Since we have three

modalities, there are three pairs that we sum over.

Refine stage The next stage introduces another loss called
the multimodal consensus coding loss. At a high level, there
may be scenarios where not every similarity score between
the different modality pairs agree within the same video.
This consensus loss penalizes samples whose scores do not
agree and forces them to have a similar value. First, an
anchor modality A is chosen and a consensus score is cal-
culated across each modality against A:

ci = K−1

(
min
x,x ̸=A

(
K1(e

i
1e

i
A), . . . ,Kn(e

i
ne

t
A)

))
(3)
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where Kx(t) = ((t+ 1)/2)
αx , t ∈ [−1, 1] and K−1 is the

inverse function and αx is a hyperparameter. We follow [6]
and use audio as the anchor and set αl = 1 and αv = 0.5.
The consensus score will be high only if all pairwise modal-
ity scores are high. If even one score does not agree, then
the consensus score will be low. The corresponding loss
forces all pairwise scores to follow this consensus:

Lconsensus =
1

|B|
∑
i∈B

∑
x,x ̸=a

∥eixeiA − ci∥2 (4)

The final loss for the refine stage is then Lrefine = Lalign +
Lconsensus.

Finetune stage After pretraining with the two-stage loss,
the model can be directly evaluated on sounding action dis-
covery. However, we notice that the MC3 loss alone is
not conducive to localized understanding, which is impor-
tant for sounding object detection. We hypothesize that al-
though we introduce an object-aware approach, sounding
action discovery is inherently a global task and there is noth-
ing in the training yet that penalizes the model for attending
to background regions. Accordingly, we introduce a hard-
negatives contrastive loss to finetune our model for sound-
ing object detection. We go back to the InfoNCE-based loss
of the align stage, except we use additional audiovisual hard
negatives. This is illustrated in Fig. 3. Originally, negative
pairs are taken from the ev embeddings of other samples
in the batch. Now, we use background region embeddings
from each sample as negative pairs as well. Formally one
side of this symmetric loss is:

L̂a→v = − 1

|B|
∑
i∈B

log
exp(eiae

i
v/τ)∑

l∈B exp(eiae
l
v/τ)

+
∑

m∈B exp(eiaê
m
v /τ)

(5)

where êiv is the visual embedding from randomly sampling
β% of the non-object regions of video clip i. For all models,
we set β to 50. We also define L̂v→a for symmetry and sum
the two as our final finetuning loss: Lfinetune = L̂v→a +
L̂a→v . Note that for the finetuning stage, we do not use
the language modality since sounding object detection is a
purely audiovisual task.

4.3. Implementation details
Encoders For our visual encoder, we use a slot attention
model pretrained on MS COCO 2017 [24] for unsupervised
object segmentation [21]. This architecture contains a bot-
tleneck slot attention module that compresses input features
into a small number of slot vectors before being decoded
back out to the original features. Each slot learns to at-
tend to regions that correspond to distinct objects (Fig. 5).
We find that this provides a useful object prior from which
we can train our model. The slot attention encoder we use

# Clips
Task Dataset Train Eval

Object Det. Epic Kitchens 67K 583
Ego4D 240K 572

Action Disc. Ego4D 240K 20K

Table 1. Summary of the train and evaluation splits of the datasets
used for our two tasks. Splits in blue indicate the object masks
are manually annotated from our benchmark, while the remaining
splits use our automatic process to calculate object masks.

contains 7 slots. We find empirically that keeping the slot
attention model’s own encoder and slots frozen while only
training its decoder leads to the best results. For the au-
dio modality, following [6], we use AST [17] which has
been pretrained on ImageNet [32]. Finally, we use a frozen
CLIP [30] model to extract language features.

Training details We train all models on four A40 GPUs
with a per-GPU batch size of 32, leading to an effective
batch size of 128. Following Chen et al. [6], we train for five
epochs each for the align and refine stages, using the final
checkpoint for sounding action discovery. We then finetune
for five epochs for sounding object detection. More details
can be found in Appendix E.

5. Training and evaluation data
Datasets Ego4D [18] is a dataset of egocentric videos
over 3,600 hours long depicting everyday activities and col-
lected around the world. A subset of the videos contain
both audio and timestamped text narrations, consisting of
sentences describing the actions of the camera-wearer. [7]
curated a cleaner subset of Ego4D with high action-audio
correspondence called Ego4D-Sounds. We sample 240K
clips from Ego4D-Sounds to use for pretraining, with each
clip being 1.5s long. The clips also come with audio and
text narrations. Sec. 5.1 describes how we automatically
annotate this training set with object segmentation masks to
use in our object-aware training framework.

For sounding object detection, we then finetune and eval-
uate our model on Ego4D and Epic Kitchens [10]. The latter
features egocentric videos of kitchen activities paired with
audio and timestamped text narrations. We finetune on the
training split of each dataset and evaluate on our bench-
mark, where we manually annotate 2.5K clips for sound-
ing actions and sounding objects, detailed in Sec. 5.2. For
sounding action discovery, we evaluate models after pre-
training on Ego4D only using the sounding action annota-
tions collected by [6]. We sample 1.6K clips for valida-
tion and 20K clips for test. We use our automatic object
mask annotation procedure for this task. A summary of the
datasets used for each task is shown in Tab. 1.
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Figure 4. Examples of annotated frames from Ego4D from our
benchmark, visualizing segmentation masks (red and green) of
ground truth objects.

5.1. Automatic object mask annotation
Recall from Sec. 4.1 that we use object segmentation masks
to guide our object-aware learning framework. Given the
scale of data we train and finetune on, manually annotat-
ing ground truth masks is impractical. Instead, we leverage
the fact that most interactions in egocentric videos involve
hands acting on the objects. Using an off-the-shelf hand-
object interaction (HOI) detection model [36], we label ev-
ery fifth frame, extracting bounding boxes for hands and
the objects they touch. We keep only the object bounding
boxes and pass them to SAM 2 [31] which propagates these
bounding boxes into segmentation masks for every video
frame. Finally, we use non-maximum supression to filter
out duplicate masks in each frame. We assume a maximum
of two objects per interaction, so we sample the first two
object masks if more than two remain after NMS.

5.2. Sounding object detection benchmark
In the previous section, we developed an automatic process
for annotating object masks for our training and finetun-
ing data (Sec. 5.1) but it is based on the assumption that
object interactions occur in the presence of hand contact.
While this assumption works well for large-scale training
data, we ideally want ground truth object masks when eval-
uating sounding object detection. Accordingly, we collect
manual object segmentation mask annotations from the test
splits of Epic Kitchens [10] and Ego4D [18].

First, annotators determine whether the action is sound-
ing. If not, then no further steps are taken. If it is, they
select the two objects that are directly involved by anno-
tating keypoints across multiple frames and also label the
name of each object. We then use SAM 2 to propagate
the keypoints into segmentation masks for all frames in
the video. There are certain object interactions where the
sound mainly comes from a single object (e.g. opening a
fridge door). Since we enforce the rule during annotation
that two objects must be labelled, in these cases, we in-
struct the annotators to label the hands as the second ob-
ject. But in the cases where there are two non-hand objects
involved (e.g. knife on chopping board), the hand is not an-
notated. During evaluation however, we remove the hand
masks, meaning the models do not need to detect hands as a
sounding object since they are not included during training.

More details about the data annotation process can be found
in Appendix D. In total, we annotated 2.5K clips across the
two datasets, of which 1.1K contain sounding actions paired
with ground truth object masks.

During evaluation, we create a pool of candidate object
masks for each video by prompting OWLv2 [27] with the
521 nouns in the Ego4D taxonomy and filtering the bound-
ing box detections based on a threshold of the confidence
scores. We then use SAM 2 to get segmentation masks for
all frames. To annotate the positive masks, we calculate the
IoU between every pair of candidate and ground truth ob-
ject mask and take the candidate mask with the highest IoU
as the positive object. If none of the candidate masks match
well (i.e. OWLv2 did not detect the sounding object), we
simply add the ground truth mask to the pool.

6. Experiments
We evaluate our model and baselines and present abla-
tion studies for two tasks: sounding object detection on
Epic Kitchens and Ego4D and sounding action discovery
on Ego4D. We show that in both cases, our model outper-
forms the previous state of the art methods.

6.1. Sounding object detection
In this task, given the sound of an object interaction, a video
frame depicting the action, and a pool of object masks, the
model first computes a similarity score for each image patch
by calculating the cosine similarity between the patch and
audio embeddings. The similarity map is interpolated to the
original video dimensions and pixel-level similarity scores
for each object gets mean-pooled. The object with the high-
est pooled score is taken as the model’s prediction for the
sounding object. If that object matches with one of the
ground truth objects, then it is considered a success. We
finetune our model on the train split of each dataset using
our hard negatives contrastive loss after pretraining with the
MC3 loss (Sec. 4.2). Baselines contain both finetuned and
zero-shot methods and we report the top-1 accuracy.

Baselines We compare our method with two categories of
models. First, we compare against SoundingActions [6],
a model that has been pretrained on the same Ego4D data
with the same MC3 loss. This baseline highlights the bene-
fits of our object-aware approach compared to learning from
global representations. Second, we compare with unsuper-
vised audiovisual localization models. DenseAV [20] is
an audiovisual segmentation model that can localize both
sounds and speech, SLAVC [28] uses a popular localiza-
tion framework called multiple instance contrastive learn-
ing [29], and SSLAlign [34] is a state of the art method.
SoundingActions is finetuned using the hard negatives loss
and SLAVC is finetuned using its original objective. We
also include a naive vision-only baseline using the HOI de-
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Figure 5. Qualitative results of our sounding object detection task. For each sub-figure from left to right: a) the original video frame, b) the
ground truth object segmentation mask, and c) the audiovisual similarity score of each object region. The object regions in c) are detected
using OWLv2 [27] and SAM 2 [31]. Dark blue is the lowest score and dark red is the highest. Refer to Appendix C for the colormap.

FT? Epic Kitchens Ego4D

Random - 17.7 17.1
Vision-only - 26.2 26.4

DenseAV [20] ✗ 26.4 29.7

SSLAlign [34] ✗ 39.5 33.9

SLAVC [28] ✗ 34.8 33.0
SLAVC [28] ✓ 35.8 31.5

SoundingActions [6] ✓ 41.0 35.1

No object masking ✓ 46.3 40.4
No slot attention ✓ 46.1 43.0
Ours [44] ✓ 49.6 43.9
Ours++∗ ✓ 52.8 44.9

Table 2. Top-1 accuracy (%) for sounding object detection. We
finetune (FT) our model and the previous state of the art [6]
from sounding action discovery pretraining. We also compare
against finetuned and zero-shot audiovisual localization methods.
∗Ours++ has the same model weights as Ours but the slot atten-
tion visual encoder uses all sequence permutations [21] during eval
rather than just the standard. Additional details in Appendix F.

tection model from Sec. 5.1. We match up to 2 object masks
from the HOI model to the ground truth masks using IoU,
counting an IoU ≥ 0.85 for at least one pair as a success.

Results Tab. 2 shows the top-1 accuracy for sounding ob-
ject detection across different methods and datasets. All
three audiovisual localization baselines perform better than
the naive baselines, demonstrating that their specialized
frameworks can transfer over to understanding correspon-
dences between object interactions and sound. Out of the
three methods, DenseAV is the weakest model, likely due

to its ability to localize for both sound and speech. This can
add an additional layer of complexity since the model must
also predict which class the audio input belongs to. And for
all three localization methods, their training data [4, 8, 15]
falls under predefined audio classes (e.g. animals, music,
etc.). On the other hand, the sounds of object interactions
can be more subtle and exist on the long tail of data seen
by these methods. For most methods, Ego4D is a harder
dataset than Epic Kitchens, since the former consists of a
wide variety of scenarios and objects while the latter is lim-
ited to the kitchen setting.

Next, although SoundingActions uses the same training
loss and data as our method, we achieve significantly bet-
ter performance on this task by 11.8% on Epic Kitchens
and 9.8% on Ego4D. Unlike the baselines, our method is
object-aware, incorporating object masks that require no su-
pervision and leveraging object priors from a pretrained slot
attention encoder. This guides our model to focus on the
objects relevant to the interaction. Consequently, our model
better captures the subtle correlations between the sounds
of different object interactions. Finally, we show qualita-
tive examples from our model in Fig. 5. We visualize the
relative rankings of the object scores, with dark blue being
the least correlated with the audio and dark red the most.
Additional results can be found in Appendix A.

Ablations We present two ablations: 1) with no object-
aware masking but still using the slot attention encoder and
2) without slot attention but still using object-aware mask-
ing. The latter is equivalent to training SoundingActions
with the addition of object-aware masking. Results are
shown in Tab. 2. We see that applying either method indi-
vidually already leads to improvements over the baselines,
validating their effectiveness. However, using them jointly,
as our final model does, ultimately leads to the best results.
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AV AL
ROC PR ROC PR

Random 0.500 0.587 0.500 0.587
ImageBind [16] 0.524 0.611 0.527 0.632
LanguageBind [48] 0.529 0.627 0.551 0.636
SoundingActions [6] 0.592 0.683 0.616 0.720

No object masking 0.593 0.696 0.618 0.720
No slot attention 0.578 0.671 0.607 0.713
Ours 0.617 0.706 0.630 0.726

Table 3. Sounding action discovery results for audio-vision (AV)
and audio-language (AL). We report area-under-curve values for
receiver operating characteristic (ROC) and precision-recall (PR)
curves. We compare against the previous state of the art [6] along
with zero-shot contrastive methods [16, 48]. We empirically found
that the changes made in Ours++ made no difference for this task.

6.2. Sounding action discovery
Next, we evaluate our model on sounding action discov-
ery. After pretraining our model on Ego4D with the MC3
loss, we compute vision, audio, and language embeddings
for each of the 20K test clips and calculate pairwise cosine
similarity scores for audio-vision (AV) and audio-language
(AL). We follow Chen et al. [6] and report area under the re-
ceiver operating characteristic curve (AUC-ROC) and area
under the precision-recall curve (AUC-PR).

Baselines We compare our method against SoundingAc-
tions, which was the previous state of the art on this task.
We also compare against two other multimodal founda-
tional models: ImageBind [16] and LanguageBind [48].
Both models are trained contrastively on Internet-scale data
to align a wide range of modalities, including vision, au-
dio, language, depth, and thermal, into a single embedding
space. Given the scale of data these models have seen, we
evaluate these methods zero-shot.

Results Tab. 3 shows AUC-ROC and AUC-PR results for
sounding action discovery for both audio-vision (AV) and
audio-language (AL) modality pairs. We see that both Im-
ageBind and LanguageBind perform marginally better than
chance, indicating the large-scale pretraining of these mod-
els instills some knowledge of sounding actions. Soundin-
gActions, with its MC3 loss, does better than the other base-
lines because the loss supervises the consensus between all
three modalities to be better aligned. While our model uses
the same loss, we further improve its performance by inte-
grating object-aware training. This demonstrates that even
for a more global reasoning task, a localized approach that
prioritizes relevant objects is essential.

Out of the two modality pairs, AV benefits the most from

Figure 6. Frames from the same cluster of visual embeddings out-
put by our model from Ego4D. The frames cover different back-
ground appearances but all correspond with the sound of flowing
water, either from a tap or being poured out from a container.

the performance boost provided by our object-aware frame-
work. Since our approach focuses on the visual modal-
ity, it is reasonable that AL sounding action discovery does
not benefit equally. The improved performance nonetheless
suggests that having a more compact and expressive visual
feature helps the model learn better representations for the
other modalities as well, since the contrastive loss iterates
through all modality pairs.

To further demonstrate the audiovisual correspondences
learned by our model, we follow [6] and perform agglomer-
ative clustering on our visual embeddings using 20 clusters.
Fig. 6 shows eight examples from one such cluster. We see
that the images cover a wide variety of perspectives and vi-
sual backgrounds with the underlying similarity being that
these videos all contain the sound of flowing water. This
includes water running from the tap but also water being
poured out of a container (second example in the bottom
row). We include more cluster examples in Appendix B.

Ablations We perform the same ablation studies as
sounding object detection and report results in Tab. 3. With-
out object masking, we get minimal improvements in per-
formance compared to SoundingActions while applying ob-
ject masking directly to SoundingActions actually leads to
worse results.

7. Conclusion
We investigate how to use egocentric videos of daily actions
to learn the relationship between object interactions and
their sounds. We train a multimodal object-aware model
capable of detecting the sounding object from a set of can-
didates present in a scene and distinguishing whether an ac-
tion is sounding or not. Our framework focuses on the im-
portant regions of a video, guided during training by object
segmentation masks computed using an automatic pipeline,
allowing us to learn a more compact and expressive repre-
sentation that outperforms previous multimodal methods.
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Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junt-
ing Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-
Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feicht-
enhofer. Sam 2: Segment anything in images and videos,
2024. 6, 7, 12

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015. 5, 11

[33] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In So Kweon. Learning to localize sound source
in visual scenes, 2018. 3

[34] Arda Senocak, Hyeonggon Ryu, Junsik Kim, Tae-Hyun Oh,
Hanspeter Pfister, and Joon Son Chung. Sound source local-
ization is all about cross-modal alignment. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 7777–7787, 2023. 6, 7

[35] Aviv Shamsian, Ofri Kleinfeld, Amir Globerson, and Gal
Chechik. Learning object permanence from video, 2020. 2

[36] Dandan Shan, Jiaqi Geng, Michelle Shu, and David Fouhey.
Understanding human hands in contact at internet scale. In
CVPR, 2020. 2, 6

[37] Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths,
and Noah D. Goodman. How to grow a mind: Statistics,
structure, and abstraction. Science, 331(6022):1279–1285,
2011. 1

[38] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding, 2019.
4

[39] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool.
Semantic object prediction and spatial sound super-
resolution with binaural sounds. In European conference on
computer vision, pages 638–655. Springer, 2020. 2

[40] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool.
Sound and visual representation learning with multiple pre-
training tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14616–
14626, 2022. 2

[41] Yulin Wang, Yang Yue, Xinhong Xu, Ali Hassani, Victor
Kulikov, Nikita Orlov, Shiji Song, Humphrey Shi, and Gao
Huang. Adafocusv3: On unified spatial-temporal dynamic
video recognition, 2022. 1

[42] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor
Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale con-
trastive language-audio pretraining with feature fusion and
keyword-to-caption augmentation. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE, 2023. 2

[43] Mengyu Yang, Patrick Grady, Samarth Brahmbhatt,
Arun Balajee Vasudevan, Charles C Kemp, and James Hays.
The un-kidnappable robot: Acoustic localization of sneaking
people. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 985–992. IEEE, 2024. 2

[44] Mengyu Yang, Yiming Chen, Haozheng Pei, Siddhant Agar-
wal, Arun Balajee Vasudevan, and James Hays. Clink! chop!
thud! – learning object sounds from real-world interactions.
In ICCV, 2025. 7

[45] Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng
Li, Yu Qiao, Wanli Ouyang, and Xiangyu Yue. Meta-
transformer: A unified framework for multimodal learning.
arXiv preprint arXiv:2307.10802, 2023. 2

[46] Xingyi Zhou, Anurag Arnab, Chen Sun, and Cordelia
Schmid. How can objects help action recognition? In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2353–2362, 2023. 2

[47] Xingyi Zhou, Anurag Arnab, Chen Sun, and Cordelia
Schmid. How can objects help action recognition?, 2023.
2, 4

[48] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Wang
HongFa, Yatian Pang, Wenhao Jiang, Junwu Zhang, Zong-
wei Li, Cai Wan Zhang, Zhifeng Li, Wei Liu, and Li Yuan.
Languagebind: Extending video-language pretraining to n-
modality by language-based semantic alignment, 2023. 2,
8

10



A. Additional sounding object detection quali-
tative results

We provide additional qualitative results for sounding ob-
ject detection on Epic Kitchens in Fig. 10 and Ego4D in
Fig. 11.

B. Additional visual clustering results
Additional examples of visual embedding clusters from
Ego4D are shown in Fig. 8. In each case, cluster examples
correspond to scenarios with similar sounds.

C. Similarity map color legend
Fig. 9 shows the color scale used for visualizing the sim-
ilarity maps for sounding object detection. Darker colors
correspond to the extremes with blue being a low value and
red being a high value. Since similarity is calculated using
cosine similarity between the vision and audio embeddings,
the scores are in the range [0, 1] with a higher value depict-
ing greater correspondence.

D. Annotation details for the sounding object
detection benchmark

We use Labelbox [23] to develop our annotation interface,
shown in Fig. 7. First, annotators answer whether the action
is sounding or not. If the action is not sounding, then no fur-
ther labels are required. If the action is sounding, they then
label the locations of the two objects involved by placing
keypoints to track the objects across multiple frames. The
objects are also labelled with either a noun present in the
provided narration or a text input field is provided for the
annotators to describe the objects and optionally provide a
more descriptive narration.

E. Additional implementation details
We use a learning rate of 5e-5 and 4 video frames per clip
during pretraining. Each frame is resized to 224 on the
smaller edge and then center-cropped to 224×224. We use
a patch size of 16×16. During training, the 4 frames are
sampled randomly. During sounding action discovery eval-
uation, the 4 frames are sampled uniformly. Meanwhile,
sounding object detection uses 1 frame sampled from the
middle of the clip.

For the audio encoder, we use AST [17] pretrained on
ImageNet [32]. The input to the audio encoder are fbank
features calculated on the waveform using 128 Mel fre-
quency bins, 10ms frame shift, and a Hanning window. We
use a sample rate of 16kHz.

For the language encoder, we use the pretrained CLIP
model from Huggingface, specifically “openai/clip-vit-
base-patch32”, which we keep frozen.

For our visual encoder, we initialize from a pretrained
slot attention model trained on MS COCO 2017 [24]
from [21] that uses 7 slots. We keep the encoder and slot
embeddings of the slot attention encoder frozen and only
train the decoder weights.

We project all modalities into a common 256-
dimensional embedding space. We use video clips that are
1.5s long, which was found to be the ideal length in [6].
Given the timestamp of the narration, we extract 0.5s from
before and 1s after.

Finally, we use a confidence score threshold of 0.35 for
OWLv2 [27] when detecting object candidates in a scene
for sounding object detection.

F. Sequence permutations for the slot attention
encoder

One of the contributions from SPOT [21], the slot attention
model that we use as our visual encoder, is the introduc-
tion of a patch-order permutation strategy that changes the
output sequence order of the autoregressive decoder. The
authors found that the initial tokens rely heavily on informa-
tion from slot vectors but as more tokens are decoded, the
reliance on context from slot vectors diminish and thus pro-
vide weak supervisory signals for optimizing the slot vec-
tors.

Changing the order, or permutation, of how tokens are
autoregressively decoded during training introduces vari-
ability that teaches the model to rely more on slot infor-
mation for all tokens, leading to better downstream perfor-
mance. During test time, the model can be set to either use
the standard permutation, a random permutation, or the set
of all permutations used during training before averaging
the outputs. The paper’s codebase1 uses only the standard
permutation during test time by default, but we empirically
found that using all permutations leads to better results.

1https://github.com/gkakogeorgiou/spot

11



Figure 7. Screenshot of the Labelbox [23] interface used to annotate ground truth object masks for our sounding object detection bench-
mark. In addition to answering the questions in the left column, annotators can scrub through individual frames and apply keypoints to the
objects involved in the action. These keypoints are then used with SAM 2 [31] to extract ground truth object masks.

(a) Visual embeddings that correspond to sounds of food sizzling. (b) Visual embeddings that correspond to sounds of plants rustling.

Figure 8. Additional visual embedding clustering results. Each cluster shown corresponds to visual frames with diverse perspectives and
backgrounds. But the common trait is all corresponding sounds belong to the same category.

Figure 9. Colorbar legend used to visualize object region scores in
sounding object detection.

12



Figure 10. Additional qualitative results for sounding object detection on Epic Kitchens.
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Figure 11. Additional qualitative results for sounding object detection on Ego4D.
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